

جامعة محمد الأول المدرسة الوطنية للعلوم التطبيقية وحدة

Université Mohammed Premier École Nationale des Sciences Appliquées Ouida

Prof. Kamal GHOUMID

Année universitaire 2020 – 2021

4ème année "Ingénierie Data Sciences & Cloud Computing"

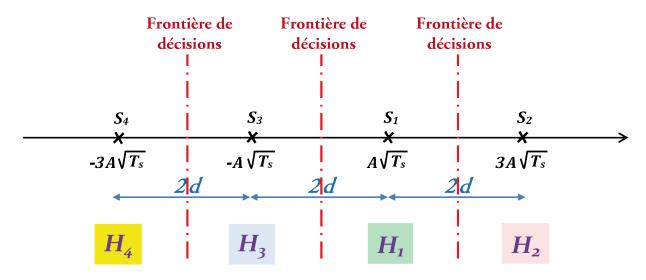
Cours "Détection, Estimation & Information pour les Data Sciences" Série de TD N^o . 6

Ex-1- Décision, Borne d'union, Probabilité d'erreur.

Des données massives sont envoyées sous forme d'un ensemble de 8 signaux a priori équiprobables, bi-orthogonaux et répartis comme suit :

$$s_1 = [\sqrt{E_s}, 0, 0, 0] \qquad s_2 = [0, \sqrt{E_s}, 0, 0] \qquad s_3 = [0, 0, \sqrt{E_s}, 0] \qquad s_4 = [0, 0, 0, \sqrt{E_s}]$$

$$s_5 = [-\sqrt{E_s}, 0, 0, 0] \qquad s_6 = [0, -\sqrt{E_s}, 0, 0] \qquad s_7 = [0, 0, -\sqrt{E_s}, 0] \qquad s_8 = [0, 0, 0, -\sqrt{E_s}]$$


Le canal de transmission est siège d'un bruit AWGN de densité spectrale de puissance bilatrale $N_0/2$.

Pour une décision optimale, déterminer selon la borne d'union la probabilité d'erreur par symbole en fonction du rapport $\frac{E_s}{N_0}$.

Ex-2- Zones de décisions, Borne d'union, Probabilité d'erreur.

Des données massives sont envoyées sous forme d'un ensemble de symboles représentés par 4 signaux S_1, S_2, S_3 et S_4 équidistants et d'amplitudes diffrentes. À la réception, les symboles reçus sont entachés d'un bruit AWGN de densité spectrale de puissance bilatrale $N_0/2 = 10^{-10} W/Hz$.

On désigne par 2d la distance entre deux signaux voisins, A une constante et T_s le temps symbole.

La figure ci-dessus illustre les zones de décisions (frontières) ainsi que les hypothèses de décisions $H_{i, i=1,2,3,4}$ relatives aux signaux $S_{i, i=1,2,3,4}$.

- 1. Exprimer l'énergie symbole ${\cal E}_s$ en fonction de la distance d.
- 2. Calculer la distance d sachant que l'énergie symbole $E_s=4\cdot 10^{-9}~j$ (valeur calculée à partir de A et de T_s).
- 3. Calculer selon la borne d'union la probabilité d'erreur par symbole relative à aux fausses décisions des données reçues.
- 4. Les zones de décisions représentées dans la figure ci-dessus ont été tracées dans le cas d'équiprobabilités de tous les signaux. On apprend par la suite que les signaux $S_{i, i=1,2,3,4}$ ont été transmis avec les probabiliés respectives $p_1 = 38\%$, $p_2 = 15\%$, $p_3 = 35\%$ et $p_4 = 12\%$, calculer puis tracer de nouveau les zones frontalières de décisions dans ce cas.