

جامعة محمد الأول المدرسة الوطنية للعلوم التطبيقية وجدة

Université Mohammed Premier École Nationale des Sciences Appliquées Oujda

Prof. Kamal GHOUMID

Année universitaire 2021 - 2022

4^{ème} année "Ingénierie Data Sciences & Cloud Computing"

Cours "Détection, Estimation & Information pour les Data Sciences" Série de TD N^o . 3

Ex-1- Estimation, Minimisation de l'Erreur Quadratique Moyenne "MMSE".

Dans une ferme, on suppose que les poids des têtes des ovins suivent une loi normale de moyenne $56, 2\,kg$ et d'écart-type $5, 1\,kg$. Le nombre total d'ovins dans la ferme est 5000 et on extrait 60 échantillons de 25 têtes.

- 1. Quelle est la moyenne et l'écart-type de la distribution de moyenne dans le cas d'un tirage :
 - sans remise (échantillon exhaustif).
 - avec remise (échantillon non exhaustif).
- 2. Pour combien d'échantillons peut-on s'attendre à trouver une moyenne comprise entre 53, 7 et $58, 6 \, kg$?

Les paysans de cette ferme cherchent à estimer le poids des ovins sans les peser. Pour cela et grâce à leurs pratiques quotidiennes, ils ont réussi à élaborer une relation empirique, donnée par l'équation ci-dessous. Cette dernière est géneralement valable entre le 6ème et le 36ème mois, elle prévoit les poids des ovins en fonction de leurs croissances. La mise à la disposition des professionnels de l'élevage d'ovin d'une telle méthode d'estimation rapide du poids vif, est d'un grand intérêt pratique, car elle permet d'estimer le poids vif des ovins à partir de leurs âges.

$$P = 27 + 10 \alpha \log \left(\frac{Nombre \ de \ mois}{Mois_{Ref}} \right)$$

Où P représente le poids des ovins en kg, $Mois_{Ref} = 6$ mois et α un coefficient de proportionnalité qu'on cherche à l'estimer en utilisant la technique de la minimisation de l'erreur quadratique moyenne MMSE (Minimum Mean Square Error).

Le tableau ci-dessous représente les poids évalués d'un échantillon d'ovins selon leurs mois de croissances.

- 3. Trouver en utilisant la technique MMSE, la valeur de α . (Rq : un code MATLAB simple et adéquat peut aider à s'acquitter d'un tel calcul).
- 4. Calculer l'écart-type σ .

- 5. Estimer le poids d'un ovin de 21 mois et 15 jours.
- 6. Prédire la probabilité pour que le poids évalué d'un ovin de 21 mois et 15 jours soit supérieur à $59 \, kg$.

Mois	Poids (kg)
6	27
12	42,34
18	54,63
24	59,17
30	66,71
36	71,85

Ex-2- Estimation, MSE.

On considère les data (échantillons) $X_1, ..., X_n$ comme variables aléatoires X_i , indépendantes et identiquement distribuées (iid) de la forme $U(\theta, \theta + 2)$. C'est-à-dire qu'elles suivent une distribution uniforme avec un minimum de θ et un maximum de $\theta + 2$. Soit l'estimateur de la moyenne :

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$= \widehat{X}$$

- 1. Calculer le biais de $\widehat{\theta}$ lors de l'estimation de θ .
- 2. Calculer la variance de $\widehat{\theta}$.
- 3. Calculer le MSE (Mean Squared Error) l'erreur quadratique moyenne de $\widehat{\theta}$ lors de l'estimation de θ .